A Hybrid State Machine Notation for Component Specification

Alexander Sakharov
mail@sakharov.net
http://alex.sakharov.net

Abstract

A wide range of software units can be classifiedtate machines. We extend
conventional state machine notations by addinglaegxpressions of events and unions of
source states to state machine transitions. Reusafilvare components are generated
from these extended state machine specificatioosipbnent specification and generation
are illustrated in Java.

Keywords: finite state machine, regular expression, codegion, component, Java.

1 Introduction

The concept of finite state machines (FSM) is wide{ploited in particular applications as well
as in commercial development environments. In egsenost real-time systems either are state
machines or contain parts that are state machwanerous specification notations are based on
this concept [Wie]. Programming languages UML [BRd{l SDL [FO] incorporate FSM
notations. Executable code is generated from FSMiBpations written in these languages. Use
of FSM specifications is growing with growing poarity of UML.

A FSM is defined by the following: a finite setstftes, a finite set of event categories and
transitions mapping some state-event pairs to @taees. Actions are normally associated with
transitions. There is considerable similarity betw&nown FSM notations [Wie]. In particular,
they all tie transitions to singular events. Sitieelevel of FSM specifications is pretty low,
Harel introduced hierarchical statecharts [Ha]ribeo to reduce the size of the specifications.
State machines can be constructed from regulaesgjns. Regular expressions are a more
capacious notation, but in general, they are rymiaal fit for specification of software units
categorized as state machines because regulaiseipre lack hooks for attaching actions. Still,
regular expressions are a proper specification mgacases when actions relate to events.

This article shows how to combine these two kindsatations. We expand FSM transitions by
adding regular expressions of events and by addiigns of source states. Therefore, we
associate multiple events with one transition. bfsieansitions with regular expressions whose
tokens are events may significantly reduce the ¢exity of FSMs by hiding plenty of states.
These transitions with regular expressions of evarg turned into internal FSMs that are
automatically merged with a host FSM. The use atestinions allows developers to combine
multiple transitions in one like composite statestatecharts do [Har].

FSM specifications have been used as source farggon of entire applications. This article
addresses generation of generic reusable compdnemt$-SM specifications. State machines
are components in their nature — they are logicgihg to be assembled in applications. State
machines process events and have properties ahdaseComponents generated from FSM
specifications can be introspected and customillegly can serve as containers for other
components; they provide support for persistenbes& components can be used in multi-
threaded applications and can be tied with othempmments both synchronously and
asynchronously.

The application pieces modeled by state machireasrally non-visual non-transactional
listener components. In contrast to developmeuwtieht-side visual components [Cow] and

server-side transactional components [EJB, GLIhraation of the development of these non-
visual non-transactional listener components ha®een much addressed. ActiveX automation
servers [Cha] are the only relevant category offmaments, but those are fairly primitive — they
do not handle events.

Generation of code from FSM specifications is tated with using Java as the target,
specification and implementation language. Gendradenponents are JavaBeans [Eng]. Java
introspection facilities make it possible to eagikract information from FSM specifications
represented in Java. Otherwise, parsing would ke difficult. Visual development tools like

VB [Cow] could be used for specification and getieraof FSM components instead of Java.
These tools would have to be extended to accept $i&difications and to generate components
from the specifications. We use a TV remote corfiesidler as a running example throughout
this paper.

2 Extended Transition Notation

In UML, transitions are specified as arrows conimgctwo states. UML also allows multiple
source and target states in one transition foresating concurrency. A transition string labels
each arrow. Its syntax is [OMG]:

<event-signature> | <guard-condition>] / <action-expression> <send-clause>

We are going to use the names of the source agektstates as a part of our transition notation
instead of labeling arrows. The above transitioration is expanded in two directions.

First, source and target state expressions akdinted. Source state expressions may refer to
unions of source states. Each such transition peodon denotes multiple transitions - one per
every source state. The source state express@ithé a state name, or *, @state>l. . .) or -

(<state>l. . .). Each of these expressions may be followed byhe.t@rget state expression is either
a state name or . (dot). The expressiatate>|. . .) denotes the union of the states from the
expression. The expressidrstate>|...) denotes the set of complementary states to onestfre
expression. Symbol * is used to denote the sell obaned states. Symbol + indicates that
respective hidden states should be added to thedhatates denoted by the state expression.
(Hidden states are defined below.) Dot as the tatgdée expression means that the target state is
same as the source state.

Second, event expressions are introduced as amseteto event signatures. The event signature
is an event name optionally followed by a commaasaied parameter list in parenthesis. The
event expression is a regular expression [ASU] whokens are event signatures. Event
signatures differing in parameters only are naivedid in the same expression. Conventional
regular expression syntax is utilized [ASU]. Syinbdenotes zero or more concatenations.
Symbol + denotes one or more concatenations. Syhdawiotes union.

The role of event expressions is to simplify FSMdlaing states. A regular expression can be
turned into a deterministic finite automaton [ASWpte that deterministic finite automata
accepting streams of event names can be viewe8Ms.FThis transformation is done for event
expressions containing Kleene closure or concatampASU]. The transformation results in
internal FSMs (or automata) augmenting their h&WwFspecified by the developer. The internal
FSMs add hidden states to the set of states dfdseFSM. These additional hidden states are
pairs composed of an explicitly defined state eflibst and an internal automaton state.
Execution of an internal FSM can be triggered bywaent that can be the first token in a string of
tokens from the language defined by the regularesgion. Once the execution started, the
current state is different from any named statdy One internal FSM can be in a non-start state
at any given time because there are no transiteating from a hidden state of one internal FSM

to a hidden state of a different internal FSM.

Any conventional transition defined with using aremt signature has a singular action (or
procedure) ascribed to it. Several transition astican be given for a transition defined with an
event expression. A separate action can be giveanfpevent occurring in the regular
expression. Additionally, notatiorisevent-signature>|. . .): <action-expression> and-(<event-

signature>. . .):<action-expression> can be used to specify a procedure to apply & afevents. A
default action could be provided as well. The difaction:<action-expression> applies to all

events for which no respective procedure is spEtiffTwo more procedures can be specified for
a transition with an event expression containingekke closure or concatenatioptemature:
<action-expression> and -normal:<action-expression>. Thepremature procedure is executed if the
first event making a chain that does not belonpédanguage defined by the regular expression
occurs when the internal FSM was not in an acceptatate [ASU]. Theormal procedure is
invoked when the respective internal FSM is exétdr reaching its acceptance state.

Every transition defined with an event expressgondmed. Presumably, these names serve as
identifiers for providing access to incoming evsatjuences belonging to the language defined by
the regular expression. Here is syntax of the eldérnransitions:

<name> ; <source-state-expression> | <event-expression> -> <target-state-expression> [<guard-condition>
1/
<action-expression-list> A <send-clause>

The action expression list is a comma-separatethlgarentheses. Here are sample transition
specifications. These are TV control handler ti#mss in which evengnter occurs. The send
clauses are omitted from these examples.

(-(Off))+ | (powerlupldownimuteloneltwolthreelfourlfivelsixisevenleightininelzerolenter) -> Off [errorCode]
/ (:displayError)

channel : (OnIMute) | ((oneltwolthreelfourlfivelsixisevenleightininelzero)+ enter) -> .
/ ((oneltwolthreelfourlfivelsixlsevenleightininelzero):displayChannel, enter:enterChannel,
~premature:displayWarning)

incdec : (OnIMute) | (enter (upldown)+) -> . / (up:incChannel, down:decChannel,
~premature:displayWarning)

Note that there could be conflicting transitionfirted with using event expressions. They can
conflict with the like or with conventional transibs. As usual, only one of them will fire in a
single run-to-completion step [OMG]. These confliate similar to conflicts in specification of
lexical analyzers for generators like lex [ASU]mbre than one regular expression matches an
incoming event, the first transition is fired. dtdifferent from lexical analyzers. This early
determination is necessary because there could het@n attached to any event, and event
processing should not be delayed. Once a transgtisalected, the longest lexeme is matched.
This is similar to lexical analyzers. Overall, niplé transitions with event expressions whose
languages overlap should not normally appear in Bgétifications without proper guards.

3 State Machine Specification in Java

States are specified by their names that areatdtin an array of type String[]. It is assumed
that the first element of this array is a startest®ptionally, a stop state is specified. No

transition leads to the start state or from the state. FSM events are represented in Java as the
names of listener interface methods. These methads one parameter of type EventObject.

FSM specifications in Java contain names of ligtémerfaces and class names of their
respective event sources. Transition actions aendiy the names of methods implementing

them. These methods may have one parameter oEtygraObject or may not have parameters.
Objects of this type are passed from the respelititemer interface methods. The event sources
are supposed to implement interface Runnable dsawehethods addEventListener and
removeEventListener [JBS].

Any FSM component is specified as a class deriveah fan abstract class called FSM. Class
FSM declares variables of type String[] for storkgM states, event sources and their interfaces.
All the aforementioned data members of class FSMeaid/write properties. Class FSM defines
methods to introspect its properties. These metbrdkit the JavaBeans naming design patterns
[Eng]. If classes specifying FSMs introduce proiesttthe developer should define their get/set
methods. Presumably, classes specifying FSMs aeBB&ans. They are introspected with using
Introspector.getBeaninfo(). Class FSM implementsrface Serializable. It is assumed that he
classes specifying FSMs do not have non-seriakzat@mbers.

Here is a FSM specification fragment relevant ttiansitions considered earlier:

public class TVSpecification extends FSM implements {
Vector channel; Vector incdec;
static { ...
String transitionTmp([][] = {
{"-(Off)", "(powerlupldownlmuteloneltwolthreelfourlfivelsixlsevenleightininelzerolenter)",
"Off", "[errorCode]", ":displayError" }

{*name: channel’, "(OnIMute)", "(oneltwolthreelfourlfivelsixlsevenleightininelzero)+ enter", ".",
"(oneltwolthreelfourlfivelsixisevenleightininelzero): displayChannel", “enter: enterChannel",
“~premature: displayWarning” },

{*name: incdec”, "(OnIMute)", "enter(upldown)+", ".", "up: incChannel", "down: decChannel",
“~premature: displayWarning” },

}; transition = transitionTmp;

-1}

4 Application Generation

Application generation is performed via introspetof FSM specification classes. The names of
specification classes for all synchronously coneg&SMs constitute the set of generator
parameters. The generator creates a sub-clasgdigr dass specifying a FSM and also builds
one event adapter class for the whole set of spnclusly connected FSMs. The sub-classes
generated from FSM specifications comprise impldaténs of the listener interfaces specified

in their super classes. All generated classesaaBkans [Eng]. The generated sub-classes can
be customized with respect to developer-defineggnaes at run time. The generated sub-classes
are Serializable.

For the sake of efficiency, events and statesegreesented by integers in generated code.
Implementations of listener interface methods aghb-classes that are generated from FSM
specifications have the form of switch statemeriiese cases are FSM states including pairs
with hidden states. Code for every branch in tlsegiech statements contains calls of respective
transition actions. This code also contains fragsigenerated for relevant transitions with event
expressions. Assignments changing the state app#as code as well. Transition actions for
guarded transitions are called witlifin. else if ... else ... statements.

public class TVSpecificationSub extends TVSpecification implements TVCommunication { ...
public void enter(EventObject evt) { switch (statelndex) { ... } }

)

The generated adapter class is Runnable. It casyehronously connected with any other

Runnable classes including other adapter clas$esadapter class fires event sources of its
FSMs and registers itself as a listener to thetesamrces. The adapter implements methods of all
listener interfaces specified in the set of rel&\®M components. It calls methods of the same
names of the sub-classes generated from FSM sgwifis. Each of these adapter methods
gueues incoming events. These event proceduresdsipaiakly return in order to avoid loosing
events.

public void enter(EventObject e) {
synchronized (eventQueue) { synchronized (indexQueue) {
eventQueue.addElement(e); indexQueue.addElement(new Integer(<enter>));
HH

The methodun of the generated adapter class is implemented asiaite loop. This loop

iterates over the queue of events or waits for swehen the queue is empty. The default order of
dequeuing events is FIFO, which could be overridaethe developer by means of providing
methoddequeue in a derivation of the generated adapter class. fethod yields the index of the
selected event in the queue.

Presumably, methatkqueue also implements control flow among synchronousiyrected
components. Hence it should be overridden if traptat serves multiple FSM components.
Methoddequeue determines whether a component should be activetted it is inactive and its
event occurs. Here are a few examples of compontntrelation that could be implemented in
dequeue. Some components may retain control till their ptetion. Components may or may not
resume their execution from a non-start state. Smngonent may play the role of a container,
that is, its sub-components always yield contrahtgr container component upon completion.
Methoddequeue also may asynchronously start other adaptersreigio Runnable components.
Joins with asynchronously called components cape®rmed indequeue as well.

In case of multiple components, pairs of methodsedbegin<component> andend<component>
should be overridden in a class derived from threegted adapter. The first of them is called
when the respective component is activated. Thensemethod is invoked when this component
reaches its stop state. Presumably, these metmpdisment data interchange among
synchronously connected components.

for (;;) {

boolean flag = true; int eventindex; EventObject eventValue;

while (flag) { synchronized (indexQueue) { flag = indexQueue.isEmpty(); } }

synchronized (indexQueue) { synchronized (eventQueue) {
int n = dequeue();
eventindex = ((Integer)(indexQueue.elementAt(n))).intValue(); indexQueue.removeElementAt(n);
eventValue = (EventObject)(eventQueue.elementAt(n)); eventQueue.removeElementAt(n);

I3

switch(eventindex) { ...
case <enter>: if (component1.isStart()) beginTVSpecification(); component1.enter(eventValue);

if (component1.isStop()) { endTVSpecification(); componenti.reset(); } break;

I3

5Internal FSMs

Transitions based on regular expressions contakKiiegne closure or concatenation are turned
into internal FSMs that are put together with deper-defined FSMs. Transitions with event
expressions containing unions only are unfolded imtiltiple conventional transitions.
Generation of the internal FSMs is done by applicaedf the algorithm converting regular

expressions into deterministic finite automata fi@8U]. These generated internal FSMs are
minimized after that, i.e. they are transformead eguivalent FSMs with the minimal number of
states by using the minimization algorithm from [#JSAdditionally, if there are transitions in a
generated internal FSM leading to its start sthen a new start state is created and added to the
internal FSM in order to avoid ambiguity in detenmg whether the internal FSM is active or its
host. The transitions of this newly added statiestae obtained from the transitions of the

original start state by replacing the source state with this new start state. With this extra
state, an internal FSM is active if and only if therent state is not the start one provided tbat n
transition is in progress.

The conversion algorithm from [ASU] generates iné=SMs with three states for the second
and third transitions from the sample specificatibme first internal state machine has transitions
leading from its start state to the second statieflaom the second state to itself for all events
marked by digits. Evergnter occurs in a transition leading from the secontedtathe third state.
The second internal state machine has a trans@amling from its start state to its second state
for evententer. Eventsup anddown occur in transitions from the second state tahive state and
from the third state to itself. These internal FSidsnot undergo further changes. The third states
in both machines are acceptance states.

Code fragments implementing operation of interri\B are branches in switch statements
constituting bodies of listener interface implenagiains in generated sub-classes of FSM
specifications. Each branch corresponds to a panbming an explicitly defined state and a
hidden state. Each transition of an internal FSighagnts the vector of events for the internal
FSM, calls the respective transition action metlaod] updates FSM’s state. Note that some
branches contain code for resetting internal FS$Asell as premature/normal exit procedure
calls.

The following example illustrates metheater from the sub-class generated from the
specifications under consideration:

void enter(EventObject e) {
switch (statelndex) {
case <On>:
if (errorCode) { displayError(); statelndex = <Off>; break; }
incdec.addElement(new Integer(<enters)); statelndex = <On,Incdec:1>; break;
case <On,Channel:1>:
if (errorCode) { displayError(); statelndex = <Off>; break; }
channel.addElement(new Integer(<enter>)); enterChannel(); statelndex = <On,Channel:2>; break;
case <On,Channel:2>:
if (errorCode) { displayError(); statelndex = <Off>; break; }
channel.removeAllElements(); incdec.addElement(new Integer(<enter>)); statelndex =
<On,Incdec:1>; break;
case <On,Incdec:1>:
if (errorCode) { displayError(); statelndex = <Off>; break; }
displayWarning();
incdec.removeAllElements(); incdec.addElement(new Integer(<enter>)); statelndex =
<On,Incdec:1>; break;
case <On,Incdec:2>:
if (errorCode) { displayError(); statelndex = <Off>; break; }
incdec.removeAllElements(); incdec.addElement(new Integer(<enters)); statelndex =
<On,Incdec:1>; break;
case ... // other states — code for Mute is similar to above

default: break;

I3

6 Summary

Regular expressions can be mapped to FSMs, buabthgion of regular expressions has not been
used in specification of FSM transitions. In oubhigt FSM notation, these two specification
means — FSMs and regular expressions - are usmshaert. Normally, developers have to define
a vast number of states and transitions in ordpragramme a real system. Use of regular
expressions of events advances the level of spatidh by hiding extraneous states. Due to event
expressions, the number of developer-specifie@sizdn be much less than the total number of
states. Use of unions of states also advances\kedf specification by reducing the number of
transition records.

In spite of the fact that many applications hawnpt of non-visual non-transactional listener
components that are naturally represented as FESMs have never been treated as a
component class. We describe how extended FSMfsgaitins can be turned into reusable
components that are glued in applications via figeoerated adapters. Neither UML nor SDL
offer means to generate reusable components fravhdp&cifications.

Harel introduced statecharts that made it possibtieeal with complexity of real systems by
structuring FSMs through hierarchies of compodiées [Har]. UML [BRJ] adopted Harel's
statecharts. Use of multiple synchronously conmeE®M components along with their adapter
may simulate composite states in Harel’s statesheithout introducing the complexity of the
semantics of the composite states. Also, trangtwith unions of states diminish the need for
composite states. Note that the two approache=diecimg complexity of FSMs can be
combined, i.e. Harel's statecharts can be extendixdregular expressions of events.

References

[ASU] A. Aho, R. Sethi, J.Ullman Compilers: Principles, Techniques, and Tools. AddisslieyV£985.

[BRJ] G. Booch, J. Rumbaugh, I. Jacobson. Unified Modeling Language User Guide. Addison-Wesley
Longman, 1998.

[Cha] D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.

[Cow] J. Cowell. Essential Visual Basic 5.0 Fast. Springer Verlag, 1997.

[EJB] Enterprise JavaBeans™ Specification, v. 1.0. Sun Microsystems, Inc., 1998.

[Eng] R. Englander. Developing Java Beans. O’'Reilly & Associates, 1997.

[FO] O. Feergemand and A. Olsen. Introduction to SDLE&#nputer Networks and |SDN Systems, Vol.
26, 1994.

[GLJ] S.D. Gray, R. A. Lievano, R. Jennings. Microsoft Transaction Server 2.0. SanshPghll997.

[Har] D. Harel. Statecharts: A Visual Formalism for Complex Syst&niance of Computer
Programming, 1987, #8.

[OMG] OMG Unified Modeling Language Specification, v. 1.3. Object Management Group, Inc., 1999.

[Wie] R. Wieringa. A Survey of Structured and Object-Oriented Software Smh Methods and
TechniquesACM Computing Surveys, Vol. 30, 1998, #4.

