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 Abstract

An inter-procedural data flow analysis operating on control flow graphs and collecting
information about program expressions is described in this paper. The following relational
and other expressions are analyzed: equivalences between program expressions and con-
stants; linear-ordering inequalities between program expressions and constants; equalities
originating from some program assignments; atomic constituents of controlling expressions
of program branches. Analysis is executed by a worklist-based fixpoint algorithm which
interprets conditional branches and incorporates a rule-based inference procedure. Two
variants of the polyvariant program point specialization using results of the analysis are pre-
sented. The both specializations are done at the level of control flow graphs. The variants
differ in terms of the size of residual programs.

1 Introduction
Despite wide usage of procedural languages, only few successful attempts have been made
to apply partial evaluation to these languages. One of the reasons of the limited success of
partial evaluation in this domain is due to the fact that advanced data flow analysis tech-
niques created for imperative languages have not been used to support specialization. 

Partial evaluation is called on-line if analysis is done during specialization. Partial evalua-
tion is called off-line if analysis is done before specialization. Off-line techniques, that are
considered more appropriate for procedural languages [3], employ binding time analysis to
guide specialization. Binding time analysis annotates each statement as either static or
dynamic by dividing variables into static or dynamic [17]. 

This paper presents an off-line technique. It advocated the use of data flow analysis as an
information source for specialization. An original data flow analysis method that collects
information for specialization of imperative programs is described in this paper. This anal-
ysis annotates each program point with a set of static expressions. The analysis reaches far
beyond detection of static variables. Expressions whose variables are not static can be clas-
sified as static by this analysis.

The control flow graph [1] is probably the most adequate, useful, and generic model for
analysis and optimization of programs in procedural languages. Data flow analyses operate
on environments [10, 23] that are associated with nodes or edges of control flow graphs. In
our analysis framework, environments represent relational expressions and other proposi-
tions. Specialization is done at the level of control flow graphs. Two specializations using
the information collected by our analysis are presented. One is a variant of the polyvariant
program point specialization [6, 17, 3]. This specialization may generate huge residual pro-



grams. The other is an original technique which is a limited polyvariant specialization. It
results in smaller residual programs. This paper focuses on the limited variant.

Analysis of relational expressions and other propositions expands partial evaluation hori-
zons: not only static values of variables but also other assertions may serve as pre-condi-
tions for partial evaluation of imperative programs (see also [12,9]). Our analysis and edge-
based specialization can also be viewed as general purpose analysis and optimization meth-
ods, respectively.

Environments in our analysis are basically conjunctions of certain predicate formulas.
These predicate formulas include: atomic constituents of controlling expressions of pro-
gram branches and their negations; equalities originating from some program assignments
and equality negations; equivalences between program expressions and constants of the
respective types as well as negations of the equivalences; linear-ordering inequalities
between program expressions and constants. Other atomic predicate expressions may serve
as additional environment constituents. Note that some environment constituents may rep-
resent formulas whose predicate symbols or other operations are missing from the lan-
guage. Binary relations that express aliasing information are an example [20]. 

The environments are designed to capture relevant program properties while remaining
compact. Note that most predicate symbols in procedural languages are either equivalence
relations or linear orderings. Our analysis takes advantage of tracking various properties of
all program expressions (and possibly others) simultaneously. Transfer functions [1], which
are determined by the constructs of the respective language, are not fixed in the framework.
Because of this, this framework is applicable to various languages. For instance, the lan-
guage may include arrays, pointers, and their relevant operations. 

The analysis is done by a worklist-based fixpoint algorithm that interprets conditional
branches and involves a simple and fast inference procedure. The analysis algorithm pre-
sented here is an advanced version of the algorithm from [24]. The asymptotic time com-
plexity of the analysis algorithm is proportional to the square of program size times the
complexity of the transfer functions in use. Thus, the complexity of this analysis is almost
the same as that of conventional constant propagation [26]. 

The inference procedure serves to derive additional assertions. It is repeatedly invoked as
propagation progresses. The inference procedure is based on rules. Some rules express
properties of equivalence relations and linear orderings. Other rules are determined by lan-
guage operations and are not fixed in the framework. Through the rules, the inference pro-
cedure exploits both positive atomic propositions and their negations. Though the inference
is incomplete, this heuristic inference procedure is an analysis core that distinguishes this
analysis algorithm from others. The choice of an inference procedure is driven by the goal
to derive as much as possible without imposing a burden in terms of analysis time complex-
ity. Of course, this goal is achieved at expense of theoretical soundness. 

The complete polyvariant specialization using our analysis will be called store-based
because program point versions are defined by store sets [16]. Analysis information in the
form of environments is used to represent store sets. The limited variant is called edge-
based because it employes edges of control flow graphs as program point versions. The
edge-based specialization is accomplished through the following steps: disjoint subgraphs
whose in-links are limited to one node are selected; selected subgraphs are replicated; local
propagation of analysis information is done within subgraphs; static expressions are
replaced by the respective constants; other optimizations are performed. The edge-based



specialization results in smaller residual code because the number of specialization variants
for a subgraph is limited by the number of its in-links. 

Section 2 of this paper gives motivating examples which are revisited in section 9. Section
3 outlines control flow graphs in use. Section 4 describes environments associated with
graph elements. The rules used in analysis are described in section 5. Section 6 gives the
analysis algorithm, while section 7 outlines its properties. Program specialization is pre-
sented in section 8. Section 10 surveys related work. 

2 Motivation
The following example illustrates our partial evaluation technique. The C code fragment
below implements a few transitions of a finite state machine. 

#define TRANS(A,B,C) { if (state==A) { if (event==B) { state=C; 
#define END_TR continue; } } } 
...
do { TRANS(off,on_off,on) toggle(); END_TR
if ( vol_trg ) { TRANS(off,vol_up,on) toggle(); volume=1; END_TR }
... } ... 

If no other transition applies to state off, procedure toggle does not affect variables from
this fragment, and vol_trg is a static variable (not equal 0), then the edge-based specializa-
tion makes it possible to transform this loop into more efficient code:

do { if (state==off) 
{ if (event==on_off) 

{ state=on; toggle(); }
else if (event==vol_up) 

{ state=on; toggle(); volume=1; } } 
else ... } ... 

Here is yet another example (in C) showing the power of our partial evaluation technique: 

int p(int a[], int n, int b) { int s=0; int i=0; int flag=1; float t; float t0=0.01;
do { if ( flag==1 ) { if ( b>=0 ) t=1+2*t0; else t=1+2*v; }

else if ( a[i]*u>= b ) { { if ( a[i]*u+b>=2 ) t=1; else t=1+4*v; } t=(t-0.01)*(1-t0); } 
else t=1+2*v; 
s+=a[i]*t; t0*=0.985; flag=0;

} while ( ++i<=n ); return s; }

If n=100 and b>1 are pre-conditions for partial evaluation of procedure p, then the edge-
based specialization in combination with dead-store elimination [1] gives residual code that
can be represented in C as follows:

int p(int a[], int b) { int s=0; int i=0; int flag=1; float t; float t0=0.01;
s+=a[0]*1.02; t0*=0.985; ++i; 
do { if ( a[i]*u>= b ) t=0.99*(1-t0); else t=1+2*v; 
s+=a[i]*t; t0*=0.985; 
} while ( ++i<=100 ); return s; }

The store-based specialization followed by dead-store elimination results in the code below:

int p(int a[], int b) { int s=0; int i=0; int flag=1; float t; float t0=0.01;
s+=a[0]*1.02; 
if ( a[1]*u>= b ) t=0.980248; else t=1+2*v; 



s+=a[1]*t; 
...
if ( a[100]*u>= b ) t=0.987849; else t=1+2*v; 
s+=a[100]*t; 
return s; }

3 Program Model
Let us distinguish four types of nodes in the graphs: conditional branches, assignments,
calls, and returns. Each conditional branch has two out-edges. The branch node is controlled
by a predicate expression. Control is transferred to either the then-branch or the else-branch
according to the value of the expression. Assignments embody calculations and variable
updates. Each assignment has one out-edge. Each call node also has one out-edge leading
to the callee. Return nodes have multiple out-edges leading to all return points. Neither call
nor return nodes update any variable values. Calculations of parameter and return values are
modeled by assignments in control flow graphs. There are two distinguished dummy nodes:
the start node and the end node. The start node has no in-edges and one out-edge. The end
node has no out-edges. 

We assume that every procedure has one return node. Predicate expressions controlling
branches are supposed to be atomic, i.e. they do not contain propositional connectives [8].
Branches whose controlling expressions contain propositional connectives can be reduced
to nested branches without propositional connectives by application of so-called short-cir-
cuit rules [11]. It is assumed that the size of all expressions from conditional branches and
assignments is bounded by a constant. We also assume that assignments do not contain calls
and that controlling expressions of conditional branches do not have side effects. Condi-
tional branches with side effects and assignments containing calls can be eliminated
through introduction of new variables and inclusion of additional assignments. Note that the
above transformations of the program control flow graph can be done in linear time. 

We do not fix data types and operations permitted in expressions. They depend on the lan-
guage. For instance, expressions may include array subscripting, operations on pointers,
etc. Equivalence relations and linear orderings are preferable for our analysis. When possi-
ble, other predicate symbols should be expressed through these. Major constructs of imper-
ative programming languages fall into this control flow graph model. Note that recursive
procedures are allowed. Jump tables and dynamic calls/returns are not included in the
model for reducing technicality. 

4 Analysis Framework
Let Θ denote a set of non-predicate expressions without side effects. It includes all arith-
metic and language-specific expressions originating from the program and all their subex-
pressions (except constants). The cardinal number of Θ should be proportional to program
size. Let Π be a set of atomic predicate expressions without side effects. It includes the set
of controlling expressions of program branches and equalities originating from program
assignments whose left- and right-hand sides belong to Θ and which do not refer to one
object in both states: before and after assignment. The cardinal number of Π should be pro-
portional to program size. Although, the only result of not complying with the limitations
on the cardinal numbers of Θ and Π is a higher complexity of the analysis.

For the sake of reducing technicality, we do not allow predicate expressions be subexpres-



sions. We assume that one element of Θ or Π corresponds to all textually identical expres-
sions. Moreover, expressions which differ because of inversion of operands of commutative
operations are identified, and a single specimen is kept in Θ or Π. This identification can be
done by a recursive algorithm operating on pairs of expressions. A more sophisticated iden-
tification of equal expressions could be based on further developments of ideas of Knuth
and Bendix [19]. 

Let us define the domain of environments - Ω. Two special values - undef and none - will
be used as values of environment constituents. Every environment V from Ω is triplet
(V.s,V.t,V.u). The formulas given by equivalence relations (i.e. reflexive, symmetric, transi-
tive, total relations) connecting expressions from Θ and constants of the respective types are
represented by (V.s[1],...,V.s[k]). For every equivalence relation p from the language and
every expression e from Θ, one element of array V.s represents assertions p(e,_), and one
element of V.s represents assertions ¬ p(e,_). Here and below, _ stands for a constant of the
respective type. Every V.s[i] is a constant that takes underscore’s position, undef, or none.
At minimum, equality is represented by V.s elements. 

The formulas given by linear orderings (i.e. reflexive, antisymmetric, transitive, total rela-
tions) connecting expressions from Θ and constants are represented by (V.t[1],...,V.t[h]).
For every linear ordering p from the language and every expression e from Θ, one element
of array V.t represents assertions p(e,_), and one element of V.t represents assertions p(_,e).
Every V.t[i] is a constant that takes underscore’s position, undef, or none. 

The predicate expressions of Π are represented by (V.u[1],...,V.u[m]). One element of V.u
corresponds to every predicate expression from Π. Each V.u[i] is undef, none, true, or false. 

Environments serve to represent assertions about program points. Every environment V
from Ω maps to formula Φ(V) if V does not contain undef:

Φ(V)=Φ(V.s[1])&...&Φ (V.s[k])&Φ(V.t[1])&...&Φ(V.t[h])&Φ(V.u[1])&...&Φ (V.u[m])

Φ(V.u[i]) is the respective predicate from Π if V.u[i] is true, its negation if V.u[i] is false, or
proposition T if V.u[i] is none [8]. If V.s[i] representing p(e,_) is constant c, then Φ(V.s[i])
is expression p(e,c). If V.s[i] representing ¬p(e,_) is constant c, then Φ(V.s[i]) is expression
¬ p(e,c). If V.s[i] is none, then Φ(V.s[i]) is proposition T. If V.t[i] representing p(e,_) (p(_,e))
is constant c, then Φ(V.t[i]) is expression p(e,c) (p(c,e)). If V.t[i] is none, Φ(V.t[i]) is T. 

Let us define a binary operation called µ on Ω as follows:

µ(V,V’)=(V.s[1]^V’.s[1],...,V.s[k]^V’.s[k],V.t[1]^V’.t[1],...,V.t[h]^V’.t[h],
V.u[1]^V’.u[1],...,V.u[m]^V’.u[m])

The following rules define ^ for V.s, V.t, and V.u elements:

• For any v: undef ^ v = v ^ undef = v; none ^ v = v ^ none = none; 
v ^ v = v; true ^ false = false ^ true = none. 

• Let V.s[i] and V’.s[i] represent p(e,_) (or ¬ p(e,_)), and
V.s[i] and V’.s[i] are constants of the respective type:
If p(V.s[i],V’.s[i]) then V.s[i] ^ V’.s[i] = V.s[i], otherwise V.s[i] ^ V’.s[i] = none.

• Let V.t[i] and V’.t[i] represent p(_,e), and 
V.t[i] and V’.t[i] are constants of the respective type: 
If p(V.t[i],V’.t[i]) then V.t[i] ^ V’.t[i] = V.t[i], otherwise V.t[i] ^ V’.t[i] = none.



• Let V.t[i] and V’.t[i] represent p(e,_), and 
V.t[i] and V’.t[i] are constants of the respective type:
If p(V’.t[i],V.t[i]) then V.t[i] ^ V’.t[i] = V.t[i], otherwise V.t[i] ^ V’.t[i] = none.

Operation µ plays the role of meet [18,14], but it is not commutative. Non-commutativity
is due to ^ for V.t elements. This operation for V.t elements is similar to widening [10, 5].
We will use notation x<y if the formula x=µ(x,y) holds. The same notation will be also used
in application to environment constituents: a<b iff a=a^b. 

Proposition 1. Relation < is a pre-ordering, i.e. for any x,y,z:
x<x
x<y & y<z ==> x<z

For any x and y: 
µ(x,y)<x
µ(x,y)<y

Proof. Reflexivity is obvious. If x<y and y<z, then x.u[i]=x.u[i]^y.u[i] and
y.u[i]=y.u[i]^z.u[i] for i=1,...,m. Similar equalities hold for .s and .t components of x, y, and
z. The fact that the aforementioned equalities imply equalities x.s[i]=x.s[i]^z.s[i],
x.t[i]=x.t[i]^z.t[i], x.u[i]=x.u[i]^z.u[i] is proven by considering all possible cases for con-
stituents of x, y, and z: undef, none, true, false for u[i]; undef, none, constants for s[i] and
t[i] (including cases with differently related constants). 

The inequality µ(x,y)<x is proven by checking that the following equalities hold for any x
and y: (x.u[i]^y.u[i])^x.u[i] = x.u[i]^y.u[i]; (x.t[i]^y.t[i])^x.t[i] = x.t[i]^y.t[i];
(x.s[i]^y.s[i])^x.s[i] = x.s[i]^y.s[i]. The inequality µ(x,y)<y is proven by the same method. ■

Proposition 2. If x<y, neither x nor y contains undef, then Φ(y) implies Φ(x). 

Proof. Clearly, the inequality x.s[i]<y.s[i] implies that Φ(y.s[i]) ==> Φ(x.s[i]). Similar
implications hold for pairs (x.t[i],y.t[i]) and (x.u[i],y.u[i]). Therefore, Φ(y.s[1]) &...&
Φ(y.s[k]) & Φ(y.t[1]) &...& Φ(y.t[h]) & Φ(y.u[1]) &...& Φ(y.u[m]) implies Φ(x.s[1]) &...&
Φ(x.s[k]) & Φ(x.t[1]) &...& Φ(x.t[h]) & Φ(x.u[1]) &...& Φ(x.u[m]) if x<y. ■

It is assumed that transfer function fN: Ω->Ω is defined for every assignment node N [1, 18,
14]. Transfer functions depend on the language in use. In presence of pointers, transfer
functions should subsume approximation of alias effects [1]. Consider a sample transfer
function for assignment v:=e where v is an integer variable and e is an arithmetic expres-
sion. First, the transfer function sets to none all V.s, V.t, and V.u elements which contain v.
Second, the transfer function sets V.s and V.t elements representing v to the respective ele-
ments representing e. Third, if v=e belongs to Π, then the transfer function sets V.u[i] rep-
resenting v=e to true. 

5 Rules
The rules used by the inference procedure have the form of implications. Their consequent
is an atomic predicate formula or its negation. The antecedent is conjunction of atomic pred-
icate formulas or their negations. In each rule, there is one selected atomic predicate for-
mula that is called base. The base is a pattern for an assertion represented by an environment
constituent. All other atomic predicate formulas either express conditions or are patterns for
relational expressions represented by .s or .t environment constituents. There are two types
of variables in the formulas. Variables of the first type occur in patterns and serve as coun-



terparts of expressions from Θ. All variables of the first type should occur in a base part that
is a counterpart of an expression from Θ or Π. Variables of the second type are bound with
constants. At least one occurrence of this variable in a rule is a constant counterpart in a for-
mula that is a pattern. 

All rules ought to be valid formulas [8]. Rules may vary for different languages. There is a
common class of rules, though. It includes the following rules given for all arithmetic (f)
and predicate (r) operations:

e1=c1 & ... & es=cs ==> f(e1,...,es)= f(c1,...,cs) 
e1=c1 & ... & es=cs & r(c1,...,cs) ==> r(e1,...,es)
e1=c1 & ... & es=cs & ¬ r(c1,...,cs) ==> ¬ r(e1,...,es) 

Other common rules embody properties of equivalence relations and linear orderings. Here
are several sample rules from this class:

¬ p(e1,e2) & p(e1,c1) ==> ¬ p(e2,c1)
q(e1,c1) ==> q(e1,c1)
q(e1,e2) & q(e2,c1) ==> q(e1,c1)
e1=c1 ==> q(e1,c1)
p(e1,c1) & p(e2,c2) & p(c1,c2) ==> p(e1,e2) 
p(e1,c1) & ¬ p(e2,c2) & p(c1,c2) ==> ¬ p(e1,e2) 
q(e1,c1) & q(c2,e2) & q(c1,c2) ==> q(e1,e2)
q(e1,c1) & q(c1,c2) ==> q(e1,c2) 
q(e1,c1) & q(c2,e2) & ¬ q(c1,c2) & c1≠c2 ==> e1≠e2

where p is an equivalence relation, q is a linear ordering, ei are variables of the first type
whereas ci stand for variables of the second type. Base formulas are shown in italics. The
examples below exhibit language-specific rules: 

e1>c1 & e2>c2 ==> e1+e2>c1+c2
q(e1,c1,) & e2=1 ==> q(e1*e2,c1)
e1-e2<c1 & e2<c2 ==> e1<c1+c2

6 Analysis Algorithm
We use a worklist-based fixpoint algorithm (BC) to propagate environments. This algorithm
updates the worklist by symbolically interpreting the program. It starts with an optimistic
assumption about propagated values and proceeds by changing the values until it reaches a
fixed point. BC utilizes algorithm R which does an incomplete inference. R evaluates
expressions from both Θ and Π. It also derives assertions including equivalences, their
negations, and linear-ordering inequalities from other assertions. Results of this paper apply
to any other more advanced inference algorithm while that other algorithm satisfies the
statement of Lemma 1 (see below) and while its time complexity is the same, i.e. linear.

Elements of the worklist W employed by the algorithm are pairs: the pair comprises a value
from Ω and an edge. Also, nodes are placed on W to serve as marks. The marks enable
usage of W as a stack. The value from Ω assigned to node N is denoted AN(N). The value
from Ω assigned to edge E is denoted AE(E). AN and AE constitute the output of BC. 

D(N) denotes the sole descendant of assignment/start/call node N. If N is a branch node,
then Dt(N) and Df (N) denote the then-descendant and else-descendant of N, respectively.
Dc(N) is the callee for node N, and Dr(N) is the return node of the callee. S is the start node.



Let I stand for the entire program input including initial variable values. A(I) will denote an
environment whose constituents are none except for constants representing equalities for
given static variables or other pre-conditions. 

We assume that elements of arrays .s and .t in environments are ordered by the size of
expressions of Θ. Loops in R should iterate from smaller expressions to bigger ones. We
assume that two tables - one for elements of Θ and one for elements of both Θ and Π - are
created before running BC. Each entry of the first table contains indices of .s and .t elements
that represent properties of the respective expression from Θ. Each entry of the second table
contains references to the first table for all immediate subexpressions of the expression from
Θ or Π. These tables make it possible to execute R in linear time. 

Algorithm BC

set AN(S) <- A(I); 
set W <- { ( A(I),(S,D(S) ) };
for every AN(N) except AN(S) do 

set AN(N) <- (undef,...,undef);
for every AE(N,M) do 

set AE(N,M) <- (undef,...,undef);
while W is not empty do begin

if there is pair ( B,(M,N) ) in W after the last mark K then begin
remove (B,(M,N)) from W;
set AE(M,N) <- µ(AE(M,N),B);
set AN(N) <- µ(AN(N),AE(M,N));
if N is an assignment and 
µ(AE(N,D(N)),R(fN(AE(M,N)))) is different from AE(N,D(N)) then 

add ( R(fN(AE(M,N))),(N,D(N)) ) to W; 
else if N is a call and 
µ(AE(N,Dc(N)),AN(N)) is different from AE(N,Dc(N)) then begin 

put N on W as a mark;
add ( AE(M,N),(N,Dc(N)) ) to W end

else if N is a branch controlled by an expression represented by u[i] then 
if AE(M,N).u[i] = true and 
µ(AE(N,Dt(N)),AE(M,N)) is different from AE(N,Dt(N)) then 

add ( AE(M,N),(N,Dt(N)) ) to W
else if AE(M,N).u[i] = false and 
µ(AE(N,Df(N)),AE(M,N)) is different from AE(N,Df(N)) then

add ( AE(M,N),(N,Df(N)) ) to W 
else if AE(M,N).u[i] = none then begin

if µ(AE(N,Dt(N)),R((AE(M,N).s[1],...,true,...,AE(M,N).u[m]))) 
is different from AE(N,Dt(N)) then 

add ( R((AE(M,N).s[1],...,true,...,AE(M,N).u[m])),(N,Dt(N)) ) to W
if µ(AE(N,Df(N)),R((AE(M,N).s[1],...,false,...,AE(M,N).u[m]))) 
is different from AE(N,Df(N)) then 

add ( R((AE(M,N).s[1],...,false,...,AE(M,N).u[m])),(N,Df(N)) ) to W 
(true and false are the i-th elements of u) end

end else begin
remove K from W;
if µ(AE(Dr(K),D(K)),AN(Dr(K)) is different from AE(Dr(K),D(K)) then 

add ( AN(Dr(K)),(Dr(K),D(K)) ) to W 
end 

end



Algorithm R(V)

set R(V) <- V; 
for every R(V).u[j] which is true or false and 
every evaluation rule with a matching base expression in the antecedent do

begin match other patterns against relational expressions; check conditions; 
if the antecedent is satisfied then

update R(V).s[i]/R(V).s[i] represented by a consequent part if it was none end 
for every R(V).s[j]/R(V).t[j] which is none and every evaluation rule 
whose base part in the consequent matches the respective expression from Θ do

begin match other patterns against relational expressions; check conditions;
if the antecedent is satisfied then

update R(V).s[j]/R(V).t[j] end 
for every R(V).u[j] which is none and 
every evaluation rule with a matching base in the consequent do

begin match other patterns against relational expressions; check conditions;
if the antecedent is satisfied then

update R(V).u[j]] end 

7 Analysis Properties
Let A(I,S...N) denote an environment whose constituents are true, false, or constants.
A(I,S...N) is calculated for the actual values of program expressions at the end of execution
of path S...N which is exercised for input I. A(I,S...N).u[j] is the boolean value of the respec-
tive predicate expression. For s[j] representing p(e,_), A(I,S...N).s[j] is the value of e. For
s[j] representing ¬ p(e,_), A(I,S...N).s[j] is some value of the respective type: neqp(e). It is
not equivalent (w.r.t. p) to the value of e. For t[j] representing p(e,_) or p(_,e), A(I,S...N).t[j]
is the value of expression e. 

Let g be the number of edges in the program control flow graph. AN(N) and AE(N,M) will
denote AN(N) and AE(N,M) after BC termination. Let t stand for the maximum time of
transfer function execution. Apparently, t is at least O(g). When calculating time complex-
ity, we assume that the time of executing assignments and operations from expressions
under consideration is bounded by a constant. Note that this typical assumption about lan-
guage operations can be relaxed at the cost of a higher analysis complexity. 

Theorem 1. Algorithm BC will eventually terminate on any control flow graph. The asymp-
totic time complexity of BC is O(g2*t).

Proof. The time to execute initialization steps of BC is proportional to the total number of
nodes and edges in the program graph. Algorithm BC terminates when worklist W is empty.
At most two new elements can be added to W at each iteration of BC’s main loop. This hap-
pen only when AE(E) changes. AE(E).u[i] can only drop twice: from undef to true or false
and then to none. Similarly, AE(E).s[i] and AE(E).t[i] can drop twice at most: from undef
to a constant, and then to none. Values k, l, and m are proportional to g. Hence, the main
loop may add O(g2) elements to W at most. Therefore, BC will terminate. 

The time of executing operation µ and that of assigning an environment to AN(N) or AE(N)
is proportional to g. Hence the running time of the initialization phase of BC is proportional
to g2. The time complexity of algorithm R is O(g) because the time of a single execution of
the body of each loop in R is bounded by a constant if the two tables are utilized. Since t is
at least O(g), the running time of a single iteration of the main loop of BC is proportional
to t. The overall time of executing the main loop of BC is proportional to g2*t. The asymp-



totic time complexity of BC is O(g2*t). ■

Note that the worst case is rarely achieved because AN(N) and AE(M,N) rapidly converge
to fixed points (likewise other optimistic propagation algorithms behave). Actual running
time is usually close to the best-case running time. The best-case running time of BC is
o(g*t). The asymptotic time complexity of preliminary actions including construction of
tables is not higher than BC’s asymptotic complexity.

Definition. Transfer function fN is called safe if Φ(A(I,S...N)) ==> Φ(x) implies that
Φ(A(I,S...NN”)) ==> Φ(fN(x)) for any x, any input I, and any execution path S...NN” result-
ing from the input. 

Lemma 1. Φ(x) ==> Φ(R(x)) holds for any x without undef.

Proof. Validity of the rules implies the following statements about R(x) constituents. If
x.u[i] is none and R(x).u[i] is set up to true or false by R, then Φ(x) ==> Φ(R(x).u[i]) holds.
If s[i] is raised to a constant from none by R, then Φ(x) ==> Φ(R(x).s[i]) holds. Similarly,
if t[i] is raised to a constant from none by R, then Φ(x) ==> Φ(R(x).t[i]) holds. Therefore,
Φ(x) ==> Φ(R(x)) holds because Φ(R(x)) is conjunction of Φ(x) and formulas which are
implications of Φ(x). ■

Theorem 2. If all transfer functions are safe, then all AN and AE are conservative, that is,
Φ(A(I,S...N)) ==> Φ(AN(N)) for any input I and execution path S...N resulting from I, and
Φ(A(I,S...NN”)) ==> Φ(AE(N,N”)) for any input I and execution path S...NN” resulting
from I. 

Proof. Suppose to the contrary. Consider a shortest execution path S...N such that:
implications Φ(A(I,S...M)) ==> Φ(AN(M)) and Φ(A(I,S...M’M)) ==> Φ(AE(M’,M)) hold
for any node M on path S...N except N; either one or both of these implications are not valid
formulas for N. N is not the start node because AN(S) = A(I) and A(I)<A(I,S). 

Suppose S...N has an edge which has never belonged to any pair from W. Let (M,M”) be
the first such edge on S...N. M is not the start node because (S,D(S)) is placed on W. Let M’
be the predecessor of M on S...N. By our assumption, Φ(A(I,S...M’M)) implies
Φ(AE(M’,M)). Thus AE(M’,M) does not contain undef. If M is an assignment node, then
a pair containing M’s out-edge is placed on W each time when AE(M’,M) changes.
AE(M’,M) changes at least once because AE(M’,M) does not contain undef. In particular,
a pair containing (M,M”) is placed on W when AE(M’,M) is attained. Similarly, if M is a
call node, then a pair containing (M,M”), where M” is Dc(M), is placed on W when
AE(M’,M) is attained. If M is a return node, then a pair containing (M,M”) is placed on W
when a mark in W is reached after attaining AE(M’,M). 

Φ(A(I,S...M)) is a consistent formula [8]: it is true for the values obtained after execution
of S...M on input I. If M is a branch controlled by the expression represented by u[i], then
AE(M’,M).u[i] is either equal to A(I,S...M).u[i] or none. In both cases, a pair containing
(M,M”) is placed on W when AE(M’,M) is attained. Hence every edge (M,M”) from S...N
belongs to a pair which is placed on W after AE(M’,M) is attained.

Let N’ stand for the predecessor of N on S...N. If N’ is the start node, then AE(S,N) = A(I)
and AN(N)<A(I). Hence both Φ(A(I,SN)) ==> Φ(AN(N)) and Φ(A(I,SN)) ==>
Φ(AE(S,N)) hold, which contradicts our assumption. Let N” be the predecessor of N’ on
S...N. By our assumption, Φ(A(I,S...N”N')) implies Φ(AE(N”,N’)). If N’ is a call or return
node, then A(I,S...N”N')=A(I,S...N”N’N). If N’ is a call node, then (AE(N”,N’),(N’N)) has



been placed on W. If N’ is a return node, then (AN’(N’),(N’N)) has been placed on W, and
AN’(N’)<AE(N”,N’) by Proposition 1. If N’ is an assignment node, then
(R(fN’(AE(N”,N’))),(N’,N)) has been on W, and Φ(A(I,S...N’N)) ==> Φ(fN’(AE(N”,N’)))
since all transfer functions are safe. By Lemma 1, Φ(fN’(AE(N”,N’))) implies
Φ(R(fN’(AE(N”,N’)))).

If N’ is a branch node, let u[i] represent the controlling expression of N’. If (N’,N) is the
then-edge of N’, then either (R((AE(N”,N’).s[1],...,true,...,AE(N”,N’).u[m])),(N’,N)) or
(AE(N”,N’),(N’,N)) has been on W. AE(N”,N’).u[i] is either true or none since
Φ(A(I,S...N’)) is a consistent formula. Note that Φ(A(I,S...N’N)) = Φ(A(I,S...N’)).
Henceforth, implications Φ(A(I,S...N)) ==> Φ(AE(N”,N’)) and Φ(A(I,S...N)) ==>
Φ((AE(N”,N’).s[1],...,true,...,AE(N”,N’).u[m])) hold. By Lemma 1,
Φ((AE(N”,N’).s[1],...,true,...,AE(N”,N’).u[m])) implies Φ(R((AE(N”,N’).s[1],...,true,...,
AE(N”,N’).u[m]))).

If (N’,N) is the else-edge, then either (AE(N”,N’),(N’,N)) or
(R((AE(N”,N’).s[1],...,false,...,AE(N”,N’).u[m])),(N’,N)) has been on W. AE(N”,N’).u[i]
is either false or none. Again, implications Φ(A(I,S...N)) ==> Φ(AE(N”,N’)) and
Φ(A(I,S...N)) ==> Φ((AE(N”,N’).s[1],...,false,...,AE(N”,N’).u[m])) hold. By Lemma 1,
Φ((AE(N”,N’).s[1],...,false,...,AE(N”,N’).u[m])) implies Φ(R((AE(N”,N’).s[1],...,false,...,
AE(N”,N’).u[m]))).

In all cases, such (V,(N’,N)) has been on W that Φ(A(I,S...N)) ==> Φ(V). The second
statement of Proposition 1 guarantees that successive values AN(M) and AE(E) form
decreasing sequences for any given node M and edge E. Proposition 1 also guarantees that
AN(N)<AE(N’,N). Thus, AE(N’,N)<V and AN(N)<V. By proposition 2, Φ(V) implies
Φ(AN(N)) and Φ(AE(N’,N)). This contradicts the assumption. ■

8 Specialization
Consider the store-based specialization first. Polyvariant specialization techniques select
program variables whose calculations can be done at compile time. Their values are com-
puted for every program point in a driven program [16]. Thus, values of these variables
belong to finite sets. Normally, loop indices are such variables. Suppose a technique for
detection of these variables is selected. Let Λ be the set of the variables. Let store sets be
given by AE(M,N): AE(M,N) represents all the stores that satisfy Φ(AE(M,N)). AE(M,N)
is obtained from AE(M,N) in the two following steps. First, environment elements repre-
senting v=_ for variables from Λ are changed to the respective constants if the elements
were none. Second, R is applied. 

Each edge in the control flow graph is a specialization point. Edge (M,N) is specialized with
respect to different environments AE(M,N). Apparently, there are finitely many different
AE(M,N) for every edge (M,N). The store-based specialization runs through the control
flow graph, calculates AE for current values of variables from Λ, changes expressions to
constants on the basis of equalities represented by .s elements of AE, executes static calcu-
lations, and generates code for dynamic nodes.

Polyvariant specializations may generate huge residual programs due to loop unrolling.
When code size is a concern, the edge-based specialization below is a preference. The edge-
based specialization utilizes AE and AN values. It is accomplished by the following steps.

1. Disjoint subgraphs are segregated. A subgraph is selected for every conditional branch



and every assignment which have multiple in-edges. The above node is the top node of the
respective subgraph. All assignments and conditional branches that are immediate succes-
sors of any node from the subgraph and that have one in-edge are assigned to the respective
subgraph along with their in-edges. 

2. Each selected subgraph is replicated as many times as there were top node in-edges
with different AE not containing undef before this replication process started. Then, out-
links are added to each replicated copy. These edges lead to the same nodes as the original
out-links do. The in-edges of subgraphs are distributed among copies so that all edges with
the same AE lead to one copy. Edges whose AE contain undef are eliminated. Note that all
in-edges which are also out-edges for a different subgraph lead to one copy.

3. AE of the in-edges of the top node of every subgraph copy is propagated across the sub-
graph to update AE and AN values within the subgraph. AE and AN are set by applying
transfer functions and then R to propagate environments across assignments and by setting
one .u element to true/false and then applying R to propagate environments across condi-
tional branches. It is similar to what BC does. 

4. Expressions from Θ occurring in nodes are replaced by constants if their respective
equalities represented by .s elements of AN are set to constants. Conditional branches
whose controlling expressions are static are eliminated. Identical nodes whose out-edges
lead to the same nodes are merged. Unreachable code, i.e. the nodes whose AN contain
undef and the edges whose AE contain undef, is eliminated. 

It is assumed that the both specializations are followed by dead-store elimination [1]. Figure
2 exhibits the result of transformation of the control flow graph fragment in Figure 1 in the
process of the edge-based specialization. Rectangles in figures depict assignments, calls, or
their sequences. Triangles depict conditional branches. 

Theorem 3. AN and AE remain conservative after the edge-based specialization changes
them. The number of nodes in the specialized program is O(g2) at most. 

Proof. AN values for calls, returns, and other nodes with multiple in-edges in the source
program and AE values for edges leading to the above nodes remain unchanged in the spe-
cialized program. Consider a shortest path S...N such that AN and AE are conservative for
all nodes on the path but N. N should be an internal node of one of replicated subgraphs,
i.e. it is either an assignment or a conditional branch with one in-edge, because the path is
the same as it would be in the source program, and AN and AE are not changed for the
other nodes. 

Let N’ be the immediate predecessor of N on the path, and let N” be the immediate prede-
cessor of N’. By the assumption, Φ(A(I,S...N”N’)) ==> Φ(AE(N”,N’)). If N’ is an assign-

Figure 1 Figure 2



ment, then AE(N’,N)=AN(N)=R(fN’(AE(N”,N’))). If N’ is a conditional branch and
(N’,N) is the then-edge, then AE(N’,N)=AN(N)=R((AE(N”,N’).s[1],...,true,...,
AE(N”,N’).u[m])). If (N’,N) is the else-edge, then AE(N’,N)=AN(N) =
R((AE(N”,N’).s[1],...,false,...,AE(N”,N’).u[m])). The above equalities hold because
(N’,N) is the only in-edge of N. Now, Theorem 2 reasoning applies to derive the following:
Φ(A(I,S...N’N)) ==> Φ(AE(N’,N)); Φ(A(I,S...N’N)) ==> Φ(AN(N)). This contradicts our
assumption. 

Let ei be the number of in-edges for the top node of the i-th subgraph, and ni be the number
of nodes in this subgraph. The number of added nodes is fewer than e1*n1+...+er*nr, where
r is the number of replicated subgraphs. Apparently, the following inequalities hold:
e1+...+er<g; n1+...+nr<g. Since e1*n1+...+er*nr<(e1+...+er)*(n1+...+nr), the number of
added nodes is not more than g2. ■

In practice, the number of nodes in the residual program is not big. This happens because
the subgraphs are disjoint and few edges lead into most subgraphs (see the proof above).
Normally, the number of edges leading to a subgraph is reflective of the level of nesting
conditional branches and loops. Since the nesting level is normally bounded by a small
constant, code size growth due to the edge-based specialization is linear in practice. Dead
code elimination further reduce code size. Examples from this paper exhibit residual code
that is even smaller than the source. 

9 Examples Revisited
Let us look at the two examples from the Motivation section again. Figure 3 below depicts
the control flow graph of the first code fragment. The then-branches are to the right in the
figures. The following table gives numbering for nodes in the graph:

1: state==off 2: event==on_off 3: state=on; 4: toggle(); 
5: vol_trg 6: event==vol_up 7: volume=1;

Figure 4 illustrates the outcome of subgraph replication. Figure 5 shows the same code
fragment after elimination of static conditional branches (lower 5 and 1 in Figure 4) and
elimination of unreachable code (left lower 6 and 3-4-7). Copies of node 1 in the lower
side of Figure 4 are static because assertions ¬state==off and state==off are propagated
into the left and right copies, respectively, during the edge-based specialization. Note that
this is a simple example that under-utilizes BC’s capabilities. The power of inference pro-
cedure R is not used here at all. 

The second example exhibits more power of our partial evaluation. The rules presented
earlier help to derive that the controlling expressions b>=0 and a[i]*u+b>=2 are always
true. Note that AE of the loop back edge is propagated solely to the else-branch of if (
flag==1 ). The three following subgraphs are detected and handled by the edge-based spe-
cialization:

• if ( flag==1 ) ... else t=1+2*v; (2 copies)
• t=(t-0.01)*(1-t0); (1 copy)
• s+=a[i]*t; ... while ( ++i<=n ); (3 copies, 2 merged)

If a polyvariant specialization does not use results of our analysis, then loop body
instances in the respective residual code could be represented by the following pattern:

if ( a[k]*u>= b ) { { if ( a[k]*u+b>=2 ) t=1; else t=1+4*v; } t=(t-0.01)*c; } else t=1+2*v; 
s+=a[k]*t; 



10 Related Work
Our analysis cumulates much more information than binding time analysis [17] does. It iter-
ates over the static/dynamic division not only for variables but also for other program
expressions. Moreover, our analysis exploits other relational expressions and controlling
expressions of conditional branches as another source of information for finding static
expressions. The inference procedure derives additional static information from that other
source. Hence, more precise information is yielded by our analysis algorithm. Our analysis
gives static information per program control flow edge, i.e. several classifications may be
given for one node. 

Blazy and Facon use constant propagation as a specialization enabler [4]. If a controlling
expressions of a conditional branch reduces to an equality between a variable and a con-
stant, then their method propagates the constant in the then-branch. Glueck and Klimov [13]
developed a method for propagating assertions for the sake of program specialization in a
simple functional language called S-Graph. The following assertions as well as their nega-
tions are propagated: equalities between variables and constants; equalities between struc-
ture components and constants, equalities between variables. A wider set of assertions is
propagated in our analysis, and additional assertions are derived. Note that difficulties asso-
ciated with using the operation meet for propagating assertions are missing from functional
languages. 

Meyer studied on-line partial evaluation for a Pascal-like language [21]. Andersen devel-
oped a partial evaluator for a substantial subset of C [2]. Baier, Glueck, and Zochling cre-
ated a partial evaluator for Fortran [3]. Blazy and Facon created a Fortran specializer aimed
at program understanding [4]. In contrast to these partial evaluation techniques for impera-
tive languages, our specializations are done at the level of control flow graphs. 
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The structure of the residual code generated by our store-based specialization is similar to
that of residual code resulting from the traditional polyvariant program point specialization
[6,17,3]. Our residual code is potentially more efficient because of a more precise analysis.
The store-based specialization can be combined with various versions of the traditional spe-
cialization, which may differ in the way they select variables whose calculations are
unfolded. The edge-based specialization generates small residual programs as opposed to
the store-based specialization that incorporates loop unrolling [3]. Still, some fragments of
these small residual programs are more efficient then traditional residual code. Essentially,
both the store-based and edge-based specializations are intermediate cases of driving [16].

Our framework does not fit the mold of existing static analysis formalisms [18,25,10,23].
The closest analysis frameworks to ours are the constant and assertion propagation frame-
work from [24] and the framework utilizing logical expressions whose constituents are
equalities about value numbers [15]. The class of formulas tracked in the intra-procedural
framework of [24] is substantially narrower. Algorithm BC ignores impossible pairs in-
edge/out-edge for conditional branches. Inference capabilities of the analysis algorithm
from [24] are much weaker. The framework from [15] does not include interpretation of
conditional branches and does not incorporate any inference mechanism. The analysis pre-
sented here subsumes conditional constant propagation [26, 7], and number interval propa-
gation with widening [10, 5] (widening is embedded into meet). 

Analysis and optimization algorithms for elimination of conditional branches in RTL are
proposed in [22]. The analysis algorithm from [22] is applicable to well-structured pro-
grams only. The analysis from [22] incorporates 1-step inference which is substantially
weaker than algorithm R. The analysis algorithm from [22] is a pessimistic algorithm.
Generally, pessimistic algorithms are less powerful than optimistic ones. Yet another
advantage of BC over the analysis from [22] is that BC ignores impossible pairs of in/out-
edges for conditional branches. The optimization algorithm from [22] may lead to expo-
nential growth of code size. 
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