
Calculi and Models for Non-Horn Knowledge
Bases Containing Neural and Evaluable

Predicates

Alexander Sakharov

Synstretch
Framingham, Massachusetts, USA

Abstract

This paper investigates logical foundations of the derivation of literals from non-
Horn knowledge bases with fuzzy predicates. Some of the predicates are defined by
neural networks, and some are defined by recursive functions. This inference excludes
reasoning by contradiction, and it is characterized by means of substructural single-
succedent sequent calculi with non-logical axioms expressing knowledge base rules and
facts. The semantics of this inference is specified by constrained real-valued models.
Lower bounds of fuzzy truth values of ground literals are calculated by traversing
sequent calculus derivations of the literals.

Keywords: non-Horn rule, sequent calculus, fuzzy knowledge base, real-valued logic,
neural-symbolic computing

1 Introduction

The languages of logic programs and knowledge bases (KB) are usually based
on first-order logic (FOL) [28]. Most commonly, KB facts are atoms or literals.
Atoms are expressions P (t1, ..., tk) where P is a predicate and t1, ..., tk are
terms. Literals are atoms or their negations. Non-Horn rules are expressions
A⇐ A1 ∧ ... ∧Ak, where A,A1, ..., Ak are literals. In Horn rules, A and all Ai

are atoms. In normal logic programs, A is an atom and Ai are literals.
Horn KBs have a limited inference power. The advantages of non-Horn

KB over normal logic programs are discussed in [30]. The semantics of non-
Horn KBs is given by classical 2-valued FOL models. FOL calculi are used as
the proof theories of non-Horn KBs. Nonetheless, inference for KBs and logic
programs differs significantly from inference in FOL. Most importantly, the
outcome of this inference and its intermediate steps is literal sets as opposed
to arbitrary FOL formulas.

KBs and logic programs may include computable (aka evaluable) functions
and predicates [20]. The values of terms composed of constants and evaluable
functions are calculated during inference. Also, the truth values of atoms
of evaluable predicates with constant arguments are calculated, not derived.

2 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

Evaluable functions and predicates may be partial. Evaluable predicates do
not have to be boolean, they may yield multiple truth values.

Recent advances in AI made it possible to implement some predicates as
neural networks [9,32,15,31,13]. Representing predicates by neural networks is
also known as relational embedding [7]. The fuzzy truth values of atoms of
these neural predicates with constant arguments are calculated. These values
are real numbers. For some predicates, the calculation of fuzzy truth values
of atoms with constant arguments can be implemented by other means than
neural networks.

The principle of Reductio Ad Absurdum (RAA) states that if A is deduced
from a hypothesis that is A’s complement, then A is derivable. Reasoning
by contradiction, i.e. with using RAA, is not quite adequate for KBs
with evaluable predicates [29]. It will be explained later that reasoning by
contradiction is not appropriate for KBs with neural predicates either.

The aim of this paper is to specify model and proof theories for inference
from KBs containing neural and evaluable predicates along with other
predicates that are derivable from KB rules and facts. In section 3, KB inference
without RAA is characterized by sequent calculi with a limited set of logical
and structural rules and with non-logical axioms that are images of KB facts
and rules. In section 4, the semantics of inference from KBs containing neural
and evaluable predicates is specified by constrained real-valued models. It is
also shown how to calculate lower bounds of the truth values of derived ground
literals.

2 Non-Horn Knowledge Bases With Fuzzy Predicates

Let us recall some definitions which will be used later. A KB is called consistent
if no atom is a fact or is derivable from this KB, along with its negation being
derivable or a fact. A literal is called ground if it does not contain variables.
A substitution is a finite set of mappings of variables to terms. The result of
applying a substitution to a formula or set of formulas is called its instance.

We consider inference of ground literals, which are called goals, from non-
Horn KBs. These KBs may contain predicates specified by neural networks,
which are used to approximate the truth values of atoms of these predicates
with constant arguments. Fuzzy truth values are usually represented by real
numbers from interval [0, 1]. For non-Horn KBs, it is more convenient to use
interval [−1, 1] for the representation of truth values. One represents true,
minus one represents false. Other real numbers from interval [−1, 1] represent
fuzzy truth values.

These KBs may also contain evaluable functions and predicates [20].
We assume that evaluable functions and predicates are defined as recursive
functions in a functional programming language or as algorithms in a
procedural programming language. The truth values yielded by the algorithms
implementing evaluable predicates could also be fuzzy, i.e. they could be from
interval [−1, 1].

Terms of evaluable functions with constant arguments are evaluated as

Sakharov 3

soon as they appear in KB derivations. The same applies to atoms of
neural and evaluable predicates with constant arguments. The evaluation
may not terminate, in which case it is assumed that the truth value is zero.
Any complete search strategy for inference from KBs with evaluable and
neural predicates should continue and-or search [28] simultaneously with the
evaluations including neural computations. If the evaluation of ground atom
A(...) yields a positive value above a certain threshold h > 0, then A(...) is
considered a KB fact. If the evaluation of this atom yields a negative value
below −h, then ¬A(...) is considered a fact.

All other predicates will be called derivable. As explained in [30], derivable
predicates should be considered partial by default. In the presence of neural
predicates, the truth values of ground atoms of derivable predicates should also
be real numbers from interval [−1, 1], that is, derivable predicates like neural
ones are fuzzy. It is expected that fuzzy truth values higher than h are assigned
to some facts. One is the default truth value for KB facts. Let |A| denote the
truth value of ground literal A.

We rely on the traditional definition of truth functions in fuzzy KBs [4].
The following equation defines the truth values for negation: |¬A| = −|A|.
The use of this truth function for negation is limited to the calculation of the
truth values of negatibve literals of neural and evaluable predicates. The truth
values for conjunction are defined by the following equation: |A1 ∧ ... ∧ Ak| =
min{|A1|, ..., |Ak|}. The use of this truth function for conjuction is limited to
the calculation of the truth values of the bodies of KB rules.

Truth functions for disjunctions will not be used here, and the use of
implication truth functions will be indirect in the KBs under consideration.
The meaning of KB rules is that the truth value of the rule body is a lower
bound of the truth value of the head. Given that KB rules are implications and
assuming that KB rules are not fuzzy, this semantics of KB rules is consistent
with several implication truth functions for t-norms. For the Lukasiewicz,
Godel, and product t-norms, |A⇒ B| = 1 if |A| ≤ |B| [12].

It is explained in [30] why reasoning by contradiction is questionable for
KBs with evaluable predicates. The same argument applies to KBs containing
neural predicates. Consider two KB rules P ⇐ Q and P ⇐ ¬Q. Here is
reasoning by contradiction using these rules. Suppose P is false. The first rule
implies that Q is false, and hence P is true by the second rule. Now suppose
|P | = 0. If |Q| = 0 as well, then both rules are satisfied, but they do not
provide any evidence that P is true or |P | > 0 at least.

3 Sequent Calculi

Let −A denote the complement of A, i.e. it is the negation of atom A, and the
atom of negative literal A. A sequent is Γ ` Π where Γ is an antecedent and
Π is a succedent. Antecedents and succedents are multisets of formulas. KB
inference and logic programming are concerned about the derivation of literals,
i.e. sequents of the form ` A where A is a literal. Consider single-succedent
calculi in which formulas are literals. The only structural rule is cut.

4 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

Γ ` A A,Π ` B

Γ,Π ` B
cut

These sequent calculi do not have logical axioms. The following rule is the
only logical rule. It replaces the standard negation rules.

A,Γ ` B

−B,Γ ` −A
swap

KB facts and rules can be treated as non-logical axioms [22]. Sequents of
the form ` A represent facts, and rules are represented by sequents of the form
A1, ..., An ` A where A,A1, ..., An are literals. Variables can be replaced by
any terms in instances of these axioms.

Definition 3.1 Lcs is the set of sequent calculus instances in which formulas
are literals, succedents contain one literal, the structural rule is cut, the logical
rule is swap, and non-logical axioms represent KB rules and facts.

Arguably, Lcs are some of the simplest calculi formalizing KB inference
without RAA. Alternatively, this inference could be formalized by calculi whose
sequents contain atoms only. Yet another option is to define calculi based on
clauses, i.e. disjunctions, as opposed to sequents. We chose Lcs because their
single-succedent sequents comprised of literals copy KB rules. The other two
options require KB rule transformations. Lcs rules embody two fundamental
logical principles: cut corresponds to Modus Ponens and swap corresponds to
Modus Tollens.

Usually, if a formal theory is inconsistent, then any formula is derivable in
this theory. This is why inconsistent theories are discarded. In reality, KBs
may have bugs and may be inconsistent. Proliferation of inconsistencies is
limited in Lcs. Unlike sequent calculi for FOL, nothing else could be derived in
Lcs from sequents ` A and ` ¬A alone. Nonproliferation of inconsistencies is
important in KB development because bugs do not lead to a mass of gibberish
results in this case.

Theorem 3.2 (normal form) Any Lcs derivation of literal G can be trans-
formed into such Lcs derivation of G that the premise of every swap is a KB
rule and the transformed derivation tree contains the same KB fact instances
as the original derivation tree.

Proof. Consider a Lcs derivation. Let us replace swap with the two following
rules and adjust the derivation by replacing swap with the L¬ rule followed by
the R¬ rule.

Γ ` A
−A,Γ ` L−

B,Γ `
Γ ` −B R−

The L− and R− rules can be moved upward.

Γ ` A A,Π ` B

Γ,Π ` B

−B,Γ,Π ` →
Γ ` A

A,Π ` B

A,−B,Π `
−B,Γ,Π `

Sakharov 5

Γ ` A A,Π, B `
Γ,Π, B `
Γ,Π ` −B →

Γ ` A

A,Π, B `
A,Π ` −B

Γ,Π ` −B

B,Γ ` A A,Π `
B,Γ,Π `
Γ,Π ` −B →

A,Π `
Π ` −A

B,Γ ` A

−A,B,Γ `
−A,Γ ` −B

Γ,Π ` −B
By repeatedly applying these permutations, all applications of the L−/R−

rules can be moved above all applications of cut. Since R¬ always follows L¬,
the succedents of the premises of all cut rules are single literals. Any sequence
of L−/R− rules applied to a KB rule or fact can be either discarded or replaced
by one swap rule. The above permutations do not change the set of KB fact
instances. Hence, the transformed derivation satisfies the statement of this
theorem. 2

Theorem 3.3 Lcs is sound and complete with respect to the derivation of
ground literals in FOL without RAA.

Proof. It is proved in [29] that ground literal L is derivable from KB facts and
rules in FOL without RAA if and only if −L is refutable by resolution in which
the factoring rule is not used and at least one premise of every resolution step is
not −L or its descendant. Consider such resolution refutation. The resolution
steps that are not ascendants of the endclause are discarded. Let us ground
this refutation and then exclude the step that resolves −L. There is only one
such step because at least one premise of every resolution step is not −L or
its descendant. As a result, L is added to every descendant clause of this step
including the endclause which becomes L.

Let us traverse this resolution tree bottom-up and map every resolution
step to an application of cut in Lcs. Sequent ` L is the conclusion of the last
cut in the respective Lcs derivation tree. The premises of every cut in this
tree are uniquely determined by the resolution step. The succedent of the cut
conclusion is also the succedent of the second premise, and the succedent of
the first premise is the principal formula of this cut. Every leaf node in the Lcs

derivation tree is an instance of a KB fact, KB rule, or the conclusion of swap
applied to an instance of a KB rule.

Now consider a ground normal-form Lcs derivation of sequent ` L. Every
application of cut in this derivation corresponds to a resolution step but ground
instances of KB rules and facts are used in this resolution derivation instead of
the rules and facts. The endclause of this resolution derivation is L.

The lifting lemma [6] states that if clause A is an instance of A′, B is an
instance of B′, and C is the resolvent of A and B, then there is such clause C ′

that C is its instance, and C ′ is the resolvent of A′ and B′. It is well-known that
the lifting lemma can be generalized onto arbitrary resolution derivations: If C
is the endclause of a resolution derivation with input clauses A1, ..., An which
are instances of A′1, ..., A

′
n, respectively, then there is such resolution derivation

6 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

with input clauses A′1, ..., A
′
n and endclause C ′ that C is an instance of C ′. The

proof is a straightforward induction on the depth of resolution derivations.
As a consequence of this generalization of the lifting lemma, there is a

resolution tree with the input comprised of KB rules and facts treated as clauses
and with such endclause L′ that L is its instance. A step resolving L′ and −L
is added to this derivation. The resolvent of this step is the empty clause, and
−L occurs in one premise of the last step only. 2

4 Constrained Real-Valued Models

Models are usually defined by truth tables (or functions) for logical connectives
so that the truth values of ground formulas can be calculated. No other
formulas than literals are produced during KB derivations. Because of this,
legitimate models for KB inference can be defined by a negation truth function
and by constraints on truth values in ground instances of facts and rules as
opposed to truth tables for other logical connectives.

Definition 4.1 An assignment of real numbers from interval [−1, 1] to ground
literals is aMr model if |¬A| = −|A| for any ground atom A and the following
constraints are satisfied:
1. A is a ground KB fact instance: |A| > h
2. A0 ⇐ A1 ∧ ... ∧Ak is a ground KB rule instance:

a. If |Ai| ≥ h for i = 1...k, then |A0| ≥ min{|A1|, ..., |Ak|}.
b. For j = 1, ..., k, if |A0| ≤ −h and |Ai| ≥ h for i = 1...j−1 and i = j+1...k,
then −|Aj | ≥ −|A0|.

Constraint 2a expresses the semantics of KB rules: the truth value of the
body is less or equal to the truth value of the head, min is employed as the
truth function for conjunctions of literals in the bodies. Constraint 2b is a
consequence of this semantics of KB rules with fuzzy literals. Consider the case
that |Ai| are positive for i = 1...j− 1 and i = j+ 1...k, and |A0| is negative. In
this case, inequality |A0| ≥ min{|A1|, ..., |Ak|} implies that −|Aj | ≥ −|A0|.

Literal A is valid regarding Mr models if |A′| > h for all groundings A′

of literal A in all Mr models. The constraints of Mr models can also be
considered in the context of sequents as opposed to KB facts and rules. These
constraints hold for non-logical axioms of Lcs.

Definition 4.2 The set of obscure occurrences of literals in derivation τ is
defined recursively as the minimal set of literal occurrences satisfying the
following two conditions.
- If sequent −A0, A1, ..., Aj−1, Aj+1, ..., Ak ` −Aj from τ is the conclu-

sion of swap applied to KB rule instance A0 ⇐ A1 ∧ ... ∧ Ak, then
A1, ..., Aj−1, Aj+1, ..., Ak are obscure in τ .

- If sequent A1, ..., Ak ` A0 occurs in τ and A0 is obscure in τ , then A1, .., Ak

are obscure in it.

Let m(τ) = minA∈F |A| where F is the set of non-obscure occurrences of
ground KB fact instances in derivation τ . If F = ∅, then m(τ) = 1.

Sakharov 7

Theorem 4.3 (soundness) If τ is a ground Lcs derivation of literal G, then
|G| ≥ m(τ) ≥ h for allMr models.

Proof. Let us transform τ to the normal form defined in Theorem 3.2. The
set of literals in τ is the same as the set of literals in its normal form. We
will prove by induction on the depth of normal-form derivations that |D| ≥
min{|Ai|, ..., |Aj |,m(µ)} for the endsequent A1, ..., Ak ` D of any derivation µ,
where Ai, ..., Aj are non-obscure literal occurrences in µ among A1, ..., Ak. As
a corollary, |G| ≥ m(τ). Inequality m(τ) ≥ h holds because |A| ≥ h for all
ground fact instances A.

Base: The depth of derivation µ is zero. In this case, G is an instance of a
KB fact, and the above inequality holds.

Induction step. Suppose the inequality under consideration is satisfied for
all derivations whose depth is less or equal n. Suppose the depth of µ is n+ 1.
If the endsequent A1, ..., Ak ` D is a KB rule instance, then this sequent does
not contain KB fact instances, and inequality |D| ≥ min{|A1|, ..., |Ak|,m(µ)}
holds due to constraint 2a. None of A1, ..., Ak is obscure in µ. If the last
rule in µ is swap, then its premise is a KB rule, µ does not contain KB fact
instances, and inequality |D| ≥ min{|A1|,m(µ)} holds due to constraint 2b.
Literals A2, ..., Ak are obscure in µ.

Now let the last rule in µ be cut, the first premise of this cut be B1, ..., Bk `
C1, and the second premise be C1, ..., Cm ` D. The conclusion of this cut
is B1, ..., Bk, C2, ..., Cm ` D. If δ is the derivation ending in B1, ..., Bk ` C1,
Bb, ..., Bb′ are the non-obscure literals of this antecedent in δ, ν is the derivation
ending in C1, ..., Cm ` D, Cc, ..., Cc′ are the non-obscure literals of the
antecedent of the latter sequent in ν, then |C1| ≥ min{|Bb|, ..., |Bb′ |,m(µ)}
and |D| ≥ min{|Cc|, ..., |Cc′ |,m(ν)} by the induction assumption.

If C1 is obscure in ν, then it is also obscure in µ. In this case, all
literal occurrences from δ including B1, ..., Bk are obscure in µ. This is
proved by a straightforward induction on the depth of normal-form derivations.
In the case of obscure C1, the set of non-obscure literal occurrences of µ
is the same as the set of non-obscure literal occurrences of ν. Therefore,
|D| ≥ min{|Cc|, ..., |Cc′ |,m(µ)}.

Now, consider the case that C1 is not obscure in ν, i.e. Cc is C1.
By a straightforward induction on the depth of normal-form derivations,
the succedent of the endsequent of any derivation γ is not obscure in
γ. As a corollary, C1 is not obscure in µ. The remaining literals
among Cc, ..., Cc′ are not obscure in µ either. Let Cc′′ follow Cc in this
list of literals. By combining the inequalities for both premises, we get
|D| ≥ min{|Bb|, ..., |Bb′ |,m(δ), |Cc′′ |, ..., |Cc′ |,m(ν)}. The set of non-obscure
occurrences of KB fact instances of µ is the union of the respective sets of δ
and ν. Hence, |D| ≥ min{|B1|, ..., |Bk|, |Cc′′ |, ..., |Cc′ |,m(µ)}. 2

This theorem establishes that m(τ) is a conservative approximation of the
truth values of G in Mr models. The proof of Theorem 3.3 shows that
resolution refutations can be transformed to normal-form Lcs derivations in

8 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

a linear time of the size of the refutations. It is clear from the proof of
Theorem 4.3 that the calculation of a lower bound of |G| can be done in a single
postorder traversal of the derivation tree. Detecting obscure literal occurrences
is done simultaneously with the calculation of m values for sequent succedents
during this traversal. Hence, this calculation takes a linear time of the size
of G’s derivation in Lcs. Efficient resolution methods can implement inference
from non-Horn KBs containing neural and evaluable predicates, and then lower
bounds of fuzzy truth values of the goals are calculated.

Theorem 4.4 (completeness) If |G| ≥ h in all Mr models for ground literal
G, then there exists a derivation of G in Lcs.

Proof. Suppose G is not derivable in Lcs from KB facts and rules. Let us
look at model M in which |B| = 1 for every ground literal B that is derivable
from KB facts and rules, |C| = −1 for every such ground literal C that −C is
derivable, and |D| = 0 for every other ground literal D. Such model M exists
for any consistent KB, and |G| = 0 in M .

Constraint 1 holds for M because ground instances of facts are derivable.
Suppose constraint 2a is violated for ground KB rule instance A0 ⇐ A1∧...∧Ak.
In this case, |Ai| = 1 for i = 1...k, and all sequents ` Ai are derivable in Lcs.
Hence, A0 is derivable from the latter by k applications of cut to A1, ..., Ak ` A0

and to every ` Ai for i = 1...k. Hence, constraint 2a could not be violated for
this rule instance.

If we suppose that constraint 2b is violated for ground KB rule instance
A0 ⇐ A1∧ ...∧Ak, then all Ai for i = 1...j−1 and i = j+1...k are derivable in
Lcs, and −A0 is also derivable. Sequent −A0, A1, ..., Aj−1, Aj+1, ..., Ak ` −Aj

is derived by applying swap to this KB rule instance. −Aj is derivable by
application of cut to this sequent and to ` −A0 followed by k − 1 applications
of cut using ` Ai for i = 1...j − 1 and i = j + 1...k as the first premise.
Consequently, constraint 2b could not be violated for this rule instance.
Therefore M is a Mr model and the assumption about G not being derivable
in Lcs cannot be true. 2

5 Related Work

An overview of KB inference methods including resolution-based methods can
be found in [28]. Ordered resolution is recognized as one of the most efficient
inference methods [3]. It is used in modern theorem provers [17]. Ordered
resolution has been adapted to inference from non-Horn KBs without RAA
[29].

Description logics [2] and other logics with more limited capabilities than
FOL are relevant to KB inference. Inference without RAA is used in
argumentation logics [16]. The proof theory suggested in that paper is natural
deduction without the RAA rule. Other arumentation logics with limited
inference capabilities have been proposed in [5].

Inference from fuzzy KBs is focused on numerical calculations approximat-
ing truth values. Forward chaining normally serves as the inference mechanism

Sakharov 9

for fuzzy KBs [4]. KB inference without RAA is more powerful than the forward
application of Modus Ponens in chaining and it can be efficiently implemented
by leveraging on advanced resolution methods. For non-Horn KBs with neural
and evaluable predicates, symbolic inference is done first and then approximate
truth values are computed by traversing the derivation trees. In contrast to
fuzzy truth functions for logical connectives [12], we utilize constraints imposed
by KB rules on fuzzy truth values.

Paper [7] is a comprehensive survey of recent work in the area of neural-
symbolic computing. Neural-symbolic systems integrate neural networks and
inference methods. In particular, neural networks are used for guiding symbolic
inference [33,14,26]. Integration of neural and fuzzy systems is analyzed in [1].

Paper [27] introduces a neural-symbolic method employing weighted real-
valued functions for calculating lower and upper bounds of the truth values of
FOL formulas. Inference is implemented as alternating upward and downward
passes over the structure of the formulas. Truth value bounds are adjusted
during these passes. Modus Ponens and Modus Tollens are used to get truth
value bounds. In our work, KB rules play the role of premises of Modus Ponens,
and swapped KB rules can be viewed as premises of Modus Tollens.

Non-Horn KBs containing neural and evaluable predicates are similar to
possibilistic logic [10] in the sense that in both of them, real numbers are
associated with derived ground literals. A survey of fuzzy proof theories in
which numbers indicating truthness are attached to FOL formulas is presented
in [11]. The major difference of our approach is that literals are the only FOL
formulas involved in the KB formalism considered here.

ProbLog [25] extends Prolog by associating probabilities with facts. It
is assumed that all ground instances of a non-ground fact are mutually
independent and share the same probability. ProbLog engines calculate
approximate probabilities for inference goals. Since Prolog has positive goals
only, negation as failure is adopted in ProbLog to derive negative goals. Non-
Horn KBs with neural and evaluable predicates are not probabilistic, they use
constraints on the truth values of literals for getting lower bounds of the truth
values of derived goals. Inference of negative goals from non-Horn KBs is direct,
which helps avoid controversies related to negation as failure [8].

DeepProbLog [19] extends ProbLog by allowing neural networks to be
associated with facts instead of probabilities. The probabilities of ground
instances of a fact are calculated by the neural network associated with
the respective predicate. This is similar to our assumption except for the
interpretation of the values yielded by neural networks. We follow their
traditional interpretation as fuzzy truth values of ground facts.

Sequent calculus derivations for Horn formulas are researched in [21].
Substructural sequent calculi have been investigated for decades [24,23]. Lcs

instances are substructural calculi. The set of Lcs calculi is particularly tailored
to inference from non-Horn KBs with neural and evaluable predicates. The
replacement of the two negation rules with the swap rule makes Lcs single-
succedent, which is essential for the approximation of truth values.

10 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

Lcs instances contain non-logical axioms which represent KB rules and
facts. The cut rule is a core of these calculi. Properties of sequent calculi
with non-logical axioms in the form of so-called mathematical basic sequents
are investigated in [22]. Axioms corresponding to KB rules/facts can be
transformed to mathematical basic sequents.

Like Lcs, LK−c calculi from [30] contain non-logical axioms representing
KB rules and facts. LK−c calculi characterize inference of literals from non-
Horn KBs without using RAA. Those calculi have the same inference power as
Lcs but they employ standard negation rules as opposed to the swap rule, they
allow multiple literals in succedents. LK−c derivations cannot be directly used
for the approximation of fuzzy truth values.

6 Conclusion

The language of non-Horn KBs is much simpler than the language of FOL.
Negation is a connective in this language. Conjunction with a variable number
of arguments and implication are embedded in KB rules but they are not
standalone connectives in the language. Non-Horn KBs with evaluable and
neural predicates integrate reasoning, computation, and neural networks. They
are neural-symbolic systems [18]. These KBs bear similarities with fuzzy KBs
[4], but the inference is symbolic. There exist efficient inference methods [29]
which can be directly applied to non-Horn KBs containing neural and evaluable
predicates.

The calculi and models presented here are comprehensible. Both non-logical
axioms of Lcs and the constraints in Mr models are projections of KB facts
and rules. The most important feature of our characterization of non-Horn KBs
with evaluable and neural predicates is that Lcs derivations provide sufficient
information for the calculation of lower bounds of the truth values of the
derivation goals. Hilbert-type systems are less adequate for characterizing these
KBs because they would explicitly include other logical connectives, possibly
non-standard ones.

It is feasible to get multiple Lcs derivations of the same goal. These
derivations of one literal may give various approximations of the truth value
of this literal. It may be beneficial to skip some facts with truth values close
to h during the derivation process. The design of efficient inference methods
capturing higher truth values is beyond the scope of this paper. Investigation of
the applicability of other fuzzy truth functions [12] to non-Horn KBs containing
neural and evaluable predicates is a topic for future research.

References

[1] Abraham, A., Adaptation of fuzzy inference system using neural learning, in: Fuzzy
systems engineering, Springer, 2005 pp. 53–83.

[2] Baader, F., I. Horrocks and U. Sattler, Description logics, Foundations of Artificial
Intelligence 3 (2008), pp. 135–179.

[3] Bachmair, L. and H. Ganzinger, Resolution theorem proving, in: Handbook of automated
reasoning, Elsevier, 2001 pp. 19–99.

Sakharov 11

[4] Barros, L. C. d., R. C. Bassanezi and W. A. Lodwick, “A first course in fuzzy logic, fuzzy
dynamical systems, and biomathematics: theory and applications,” Springer, 2017.

[5] Besnard, P. and A. Hunter, A review of argumentation based on deductive arguments,
Handbook of Formal Argumentation (2018), pp. 437–484.

[6] Chang, C.-L. and R. C.-T. Lee, “Symbolic logic and mechanical theorem proving,”
Academic press, 1973.

[7] d’Avila Garcez, A. S., M. Gori, L. C. Lamb, L. Serafini, M. Spranger and S. N.
Tran, Neural-symbolic computing: An effective methodology for principled integration
of machine learning and reasoning, Journal of Applied Logics 6 (2019), pp. 611–632.

[8] Denecker, M., M. Truszczynski and J. Vennekens, About negation-as-failure and the
informal semantics of logic programming, Association for Logic Programming (2017).

[9] Dong, H., J. Mao, T. Lin, C. Wang, L. Li and D. Zhou, Neural logic machines, in:
International Conference on Learning Representations, 2019.

[10] Dubois, D. and H. Prade, Possibilistic logic-an overview., in: Computational logic, 2014,
pp. 197–255.

[11] Gottwald, S., “A treatise on many-valued logics,” Research Studies Press, 2001.
[12] Hájek, P., “Metamathematics of fuzzy logic,” Springer Science & Business Media, 2013.
[13] Hong, J. and T. P. Pavlic, An insect-inspired randomly, weighted neural network with

random fourier features for neuro-symbolic relational learning, in: Neural-Symbolic
Learning and Reasoning (2021).

[14] Huang, D., P. Dhariwal, D. Song and I. Sutskever, Gamepad: A learning environment
for theorem proving, in: International Conference on Learning Representations, 2019.

[15] Ishihara, T., K. Hayashi, H. Manabe, M. Shimbo and M. Nagata, Neural tensor networks
with diagonal slice matrices, in: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018, pp. 506–515.

[16] Kakas, A. C., P. Mancarella and F. Toni, On argumentation logic and propositional logic,
Studia Logica 106 (2018), pp. 237–279.

[17] Kovács, L. and A. Voronkov, First-order theorem proving and vampire, in: International
Conference on Computer Aided Verification, Springer, 2013, pp. 1–35.

[18] Lamb, L. C., A. S. d’Avila Garcez, M. Gori, M. O. R. Prates, P. H. C. Avelar and
M. Y. Vardi, Graph neural networks meet neural-symbolic computing: A survey and
perspective, in: Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, 2020, pp. 4877–4884.

[19] Manhaeve, R., S. Dumančić, A. Kimmig, T. Demeester and L. De Raedt, Neural
probabilistic logic programming in deepproblog, Artificial Intelligence 298 (2021),
p. 103504.

[20] McCune, W., Otter 3.3 reference manual and guide, Technical report, Argonne National
Lab. (2003).

[21] Miller, D., G. Nadathur, F. Pfenning and A. Scedrov, Uniform proofs as a foundation
for logic programming, Annals of Pure and Applied logic 51 (1991), pp. 125–157.

[22] Negri, S. and J. Von Plato, “Structural proof theory,” Cambridge University Press, 2001.
[23] Ono, H., Logics without the contraction rule and residuated lattices, Australasian Journal

of Logic (2010).
[24] Paoli, F., “Substructural logics: a primer,” Springer Science & Business Media, 2013.
[25] Raedt, L. D. and A. Kimmig, Probabilistic (logic) programming concepts, Machine

Learning 100 (2015), pp. 5–47.
[26] Rawson, M. and G. Reger, A neurally-guided, parallel theorem prover, in: International

Symposium on Frontiers of Combining Systems, Springer, 2019, pp. 40–56.
[27] Riegel, R., A. Gray, F. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin,

F. Barahona, U. Sharma et al., Logical neural networks, arXiv preprint arXiv:2006.13155
(2020).

[28] Russell, S. and P. Norvig, “Artificial Intelligence: A Modern Approach,” Prentice Hall
Press, 2009, 3rd edition.

[29] Sakharov, A., Inference methods for evaluable knowledge bases, in: Software Engineering
Application in Informatics, Lecture Notes in Networks and Systems (2021), pp. 499–510.

12 Calculi and Models for Non-Horn Knowledge Bases Containing Neural and Evaluable Predicates

[30] Sakharov, A., A logical characterization of evaluable knowledge bases, in: 14th
International Conference on Agents and Artificial Intelligence, 2022, pp. 681–688.

[31] Santoro, A., D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia and
T. Lillicrap, A simple neural network module for relational reasoning, Advances in neural
information processing systems 30 (2017).

[32] Serafini, L. and A. S. d’Avila Garcez, Logic tensor networks: Deep learning and logical
reasoning from data and knowledge, in: Neural-Symbolic Learning and Reasoning (2016).

[33] Wang, M., Y. Tang, J. Wang and J. Deng, Premise selection for theorem proving by
deep graph embedding, Advances in neural information processing systems 30 (2017).

	Introduction
	Non-Horn Knowledge Bases With Fuzzy Predicates
	Sequent Calculi
	Constrained Real-Valued Models
	Related Work
	Conclusion
	References

