What is Foundations of Mathematics?

History
- Hilbert's Program

Naive Set Theory
- Cantor's Diagonal Method

Paradoxes
- Russell's Paradox
- Burali-Forti Paradox
- Cantor's Paradox

Formal Systems
- Formal Language
- Axioms and Inference Rules
- Axiomatic Method
- Proof Theory

Axiomatizations
- Set Theory
-- Zermelo-Fraenkel Axioms
-- Neumann-Bernays-Gödel Set Theory
-- Continuum Hypothesis
- Geometry
-- Euclid's Postulates
-- Hilbert's Axioms
-- Non-Euclidean Geometries
- Arithmetic
- Other Formal Systems

Mathematical Logic
- Propositional Calculus
- First-Order Predicate Calculus
-- Normal Forms
-- Herbrand Theorem
- Intuitionistic Logic
- Higher-Order Logic
- Modal Logic
- Equational Logic
- Logic Systems
-- Natural Deduction
-- Sequent Calculus

Completeness and Consistency
- Gödel's Incompleteness Theorem

Intuitionism
- Constructive Mathematics

Model Theory
- Löwenheim-Skolem Theorem
- Skolem Paradox

Computability
- Computation Models
- Unsolvability
- Lambda Calculus

Category Theory

Philosophy of Mathematics

General Information

Reference

Peronalities

Link Collections